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lterated Hash Function

e Compression function
F:{0,1} x {0,1}* — {0,1}¢

e Initial value hy € {0,1}*

Input m = (mq, ma, ..., my), m; € {0,1} for 1 < i <1
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Motivation

How to construct a compression function using a smaller component?

E.g.) Double-block-length (DBL) hash function
e [he component is a block cipher.

e output-length = 2 x block-length

e abreast/tandem Davies-Meyer, MDC-2, MDC-4, ...

Cf.) Any single-block-length HF with AES is not secure.
e Output length is 128 bit.

e Complexity of birthday attack is O(2%4).



Result

e Some plausible DBL HFs

— Composed of a smaller compression function

« F(z) = (f(z), f(p(x)))

p is a permutation satisfying some properties
+ Optimally collision-resistant (CR) in the random oracle model

— Composed of a block cipher with key-length > block-length

x AES with 192 /256-bit key-length
* Optimally CR in the ideal cipher model

e A new security notion: Indistinguishability in the iteration

Def. (optimal collision resistance)

Any collision attack is at most as efficient as a birthday attack.



Related Work on Double-Block-Length Hash Function

e Lucks 05
o F(ga ham) — (f(gah7m)7f(hagam))
— Optimally CR if f is a random oracle

e Nandi 05
— F(z) = (f(x), f(p(x))), where p is a permutation

— Optimally CR schemes if f is a random oracle



Other Related Work

Single block-length

e Preneel, Govaerts and Vandewalle 93

PGV schemes and their informal security analysis

e Black, Rogaway and Shrimpton 02

Provable security of PGV schemes in the ideal cipher model

Double block-length

e Satoh, Haga and Kurosawa 99
Attacks against rate-1 HFs with a (n, 2n) block cipher

e Hattori, Hirose and Yoshida 03
No optimally CR rate-1 parallel-type CFs with a (n,2n) block cipher



DBL Hash Function Composed of a Smaller Compression Function

e { is a random oracle

e p is a permutation 4
— Both p and p~! are easy
— popis an identity permutation - h;

F(z) = (f(z), f(p(x)))
F(p(z)) = (f(p(x)), f(x))

f(x) and f(p(x)) is only used for F'(x) and F'(p(x)).

We can assume that an adversary asks = and p(x) to f simultaneously.



Collision Resistance

Th. 1 Let F': {0,1}*""® — {0,1}*" and F(x) = (f(z), f(p(x))).
Let H be a hash function composed of F'.
Suppose that

e p(p(+)) is an identity permutation

e p has no fixed points: p(x) # x for Va

Adv?(q) % success prob. of the optimal collision finder for H

which asks ¢ pairs of queries to f.

2
Then, in the random oracle model, Adv$Y'(q) < 2% + (%) .

Note) MD-strengthening is assumed in the analysis.



Proof Sketch

Fis CR= His CR

Two kinds of collisions:

PrF(z) = F(2') | 2" # p(x)]

|
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= Pr(f(2) = f(&') A f(pl2)) = F(p(a')]
Pr[F(z) = F(@') |/ = plx)] = Prlf(z) = f(p(2))] = 5

The collision finder asks ¢ pairs of queries to f: x; and p(z;) for 1 < 7 <gq.

co q q\?
AdVHH(Q) < on + (Q—R)



Collision Resistance: A Better Bound

Th. 2 Let H be a hash function composed of F': {0,1}?""° — {0,1}*".
Suppose that

e p(p(-)) is an identity permutation

e p(g,h,m) = (pev(g, 1), Pm(m)) - g,
— Pev has no fixed points
— pev(g, h) # (h,g) for V(g, h) - hy

Then, in the random oracle model,

2
Adv%ﬂl(q) <3 (2%)
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Proof Sketch

Two kinds of collisions: w x
1 Iy S

PP (x) = F(z')| 2’ # p(a)] = (2) —F

Pr[F(z) = F(2') |2 = p(x)] = o w ke collision
g N e j




Th.1vs. Th.?2

The difference between the upper bounds is significant.

E.g)n=128 ¢q=2%

Th.1  Advy'(q) < 2%
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E.g.) A permutation p satisfying the properties in Th. 2

p(gah7m> — (g D Clah D 627m>7 Where C1 # Co
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DBL Hash Function Composed of a Block Cipher

C 1S a hon-zero constant.
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DBL Hash Function Composed of a Block Cipher

e can be constructed using AES with
*é_. 9i 192 /256-bit key

? l e requires only one key scheduling
v

F' is simpler than abreast Davies-Meyer and tandem Davies-Meyer
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Collision Resistance

Th. 3 Let H be a HF composed of F': {0, 1}*"™ — {0, 1}?" such that

\
gi_1+L> € =<> - gZ

Fo— |hia $ l
m;
Y Y
P N
C —>@T> e P
def . .
Advi'(q) = success prob. of the optimal collision finder for H

which asks ¢ pairs of queries to (e,e™').

Then, in the ideal cipher model, for 1 < q < 272,

co q \?
Adv§(q) <3 (Qn_l)



A Few More Examples of Compression Functions

9,21
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Conclusion

e Some plausible DBL HFs

— composed of

a smaller compression function or a block cipher

9i—1— - 9, 9i—1 ._l_> e ;') iy
i -]

hi—1— ~ h; C+§"5T>T . P - h;

p o pis an identity permutation key-length > block-length

— optimally collision-resistant

e A new security notion: Indistinguishability in the iteration



